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Abstract 

 
Analyzing spatial-temporal characteristics of traffic in large-scale networks requires 
both a suitable analysis method and a means to reduce the amount of data that must be 
collected. Of particular interest would be techniques that reduce the amount of data 
needed, while simultaneously retaining the ability to monitor spatial-temporal behavior 
network-wide. In this paper, we propose such a method, motivated by insights about 
network dynamics at the macroscopic level. We define a weight vector to build up 
information about the influence of local behavior over the whole network. By taking 
advantage of increased correlations arising in large networks, this method might require 
only a few observation points to capture shifting network-wide patterns over time. This 
paper explains the principles underlying our proposed method, and describes the 
associated analytical process.  
 
Keywords: network traffic, timescale, cross-correlation, spatial-temporal pattern, 
eigenvalue, eigenvector  

 
 

1   Introduction 
 
Most extant research on network traffic analysis focuses on observing temporal dynamics of traffic and 
effects from user and protocol behavior [1-4]. In such analyses, detailed Internet Protocol (IP) packet traces 
on individual links reveal the characteristics of network traffic at multiple timescales, e.g., rich scaling 
dynamics arising over small timescales [3], and self-similarity and long-range dependence at large timescales 
[4]. Recently, graph wavelets have been proposed for spatial traffic analysis with knowledge of aggregate 
traffic measurements over all links [5]. This method can provide a highly summarized view of traffic load 
throughout an entire network. Despite these advances, spatial and temporal traffic analysis still presents 
difficult challenges, not only because large-scale distributed networks exhibit high-dimensional traffic data, 
but also because current analytical methods require examination of large amounts of data, which can strain 
memory and computation resources in even the most advanced generation of desktop computers.  

Despite these inherent difficulties, investigation of spatial-temporal dynamics in large-scale networks is 
an important problem because modern society grows increasingly reliant on the Internet, a network of global 
reach that supports many services and clients. Lacking means to predict, monitor, and adjust spatial-temporal 
dynamics, Internet Service Providers (ISPs) typically over-provision network capacity, which leads to under-



 2

utilized resources on average with overloaded hotspots arising from time to time. Further, the Internet 
appears increasingly vulnerable to attacks and failures [6, 7]. These factors suggest a crucial requirement to 
devise and develop promising tools that can monitor network traffic in space and time to identify shifting 
traffic patterns. Such tools can aid in operating and engineering large-scale networks, such as the Internet. 
While useful network management tools might focus on either offline or online monitoring and analysis, the 
task of network-wide on-line monitoring presents more stringent requirements for transferring and handling 
traffic data in a timely fashion.  

To support the development of useful network management tools, the networking research community 
endeavors to devise novel and accurate methods to interpret measurements, and to derive principles for 
extracting information from raw measurement data. For example, a recent work studies correlations between 
different network flows in a French scientific network, Renater [8]. The study defines a network flow as a 
packet flow transferred from a given starting router to a given destination router. Many such flows 
simultaneously transit a large-scale network, leading to underlying interactions among the flows. 
Unfortunately, the effects of such interactions are usually not known, and so cannot contribute to better 
network engineering and management. The Renater study uses methods from random matrix theory (RMT) 
to analyze cross-correlations between network flows. (RMT methods have been recently used to study 
correlations in financial data [9].) In essence, RMT compares a random correlation matrix—a correlation 
matrix constructed from mutually uncorrelated time series—against a correlation matrix for the data under 
investigation. Deviations between properties of the cross-correlation matrix from the investigation data and 
the correlations in the random data convey information about “genuine” correlations. In the case of the 
Renater study, the most remarkable deviations arise about the largest eigenvalue and its corresponding 
eigenvector. The largest eigenvalue is approximately a hundred times larger than the maximum eigenvalue 
predicted for uncorrelated time series. The largest eigenvalue appears to be associated with a strong 
correlation over the whole network. In addition, the eigenvector component distribution of the largest 
eigenvalue deviates significantly from the Gaussian distribution predicted by RMT. Further, the Renater 
study reveals that all components of the eigenvector corresponding to the largest eigenvalue are positive, 
which implies their collective contribution to the strong correlation. Since all network flows contribute to the 
eigenvector, the eigenvector can be viewed as the signature of a collective behavior for which all flows are 
correlated. Thus, the eigenvector might provide an important clue about macroscopic behavior of the 
underlying interactions. In other words, the predominant information about network dynamics at the 
macroscopic level can be obtained from the largest eigenvalue and its corresponding eigenvector. This 
insight might prove very helpful for analyzing spatial-temporal traffic patterns in large-scale networks. 

In this paper, we propose a method for spatial-temporal traffic analysis using the eigenvector 
corresponding to the largest eigenvalue. As the macroscopic pattern emerges from all adaptive behaviors of 
flows in various directions, hotspots should be exposed, through their correlation information, as the joining 
points of significantly correlated flows. Note that the details of the components of the eigenvector of the 
largest eigenvalue reveal this information, with the larger components corresponding to the more correlated 
flows. Thus, our primary insight is to group eigenvector components corresponding to a destination routing 
domain (or autonomous system) together to build up information about the influence of the routing domain 
over the whole network. We define a weight vector for this purpose. Contrasting weights against each other 
in the weight vector, we not only can summarize a network-wide view of traffic load, but also locate hot 
spots, and even observe how spatial traffic patterns change from one time period to the next.  

While our approach builds upon the Renater study, we must solve some special problems related to 
scale. The Renater study assumes complete information from all network connection points, which proves 
feasible because the Renater network contains only about 30 interconnected routers. Arranging for complete 
coverage of observations in larger networks raises issues of scale, both in gathering data from numerous 
measurement points and in consuming computation time and memory when analyzing data. In particular, 
some heavily utilized routers may fail to collect and transfer measurement data. Usually, it is impossible to 
monitor areas of interest without corresponding measurements from those areas. To extend our ability to 
monitor network-wide behavior, we exploit correlation increases arising from collective response of the 
entire network to changes in traffic. This effect has already been observed in the framework of stock 
correlations, where cross-correlations become more pronounced during volatile periods as compared to calm 
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periods [9]. Indeed, higher values of the largest eigenvalue occur during periods of high market volatility, 
which suggests strong collective behavior accompanies high volatility. This connection should have value in 
our analysis because Internet traffic behavior appears to be nonstationary [10]. An increase in cross-
correlation allows us to infer a shift in the spatial-temporal traffic pattern of large areas of interest outside 
those few areas where measurements are made. This approach could significantly reduce requirements for 
data, perhaps to the point where monitoring may be performed in real time.  

In this paper, we use simulation results to show how our proposed technique might work in a real large-
scale network. Our results derive from a simple simulation model we developed recently to study space-time 
characteristics of congestion in large networks, and to analyze system behavior as a coherent whole [11]. 
While capturing essential time details of individual packets and connections, the model accommodates 
spatial correlations arising from interactions among adaptive transport connections and from variations in 
user demands. Though simulating an abstract network, which exhibits a regular structure and homogeneous 
behavior, our model offers a clear-cut framework to analyze spatial-temporal traffic patterns, e.g., where will 
hotspots develop and how long will they persist? Coupling our new measurement and analysis technique 
with our existing abstract simulation model allows us to compare weight vectors at different timescales. 
Using this approach, we explain the timescale of interest, and show macroscopic patterns at that timescale, 
allowing us to observe that network-wide hotspots become more prominent as increased correlation emerges. 
First, we try our method assuming complete measurement data, and then we further try our method with only 
a few observation points. The rest of this paper is structured as four sections. Section 2 describes our 
adaptation of the RMT cross-correlation method. In Section 3, we present our simulation model and discuss 
experiment results. We remark about future work in Section 4, before concluding in Section 5. 
 

2   The Cross-correlation Based Method  
 
In this section, we first discuss some important aspects associated with the Renater study, and then outline 
the cross-correlation based analysis method that we derived from the study. We describe how we represent 
network flow data and how we apply cross-correlation analysis to the data. Then, we explain our application 
of RMT (random matrix theory) to investigate cross-correlation throughout a network. 
 
2.1   The Renater study 
 
The French network Renater1 comprises a nation-wide infrastructure to enable most French research, 
technological, educational, and cultural institutions to communicate with each other, and to connect to the 
global Internet. Renater has about 2 million users, supported by about 30 interconnected routers. Barthelemy 
and colleagues [8] studied traffic characteristics based on data collected from 26 of 30 Renater routers. The 
collected data consisted of traffic flows exchanged among routers for every sampling interval, τ = 5 minutes, 
during a two-week period. The measured data encompass a total of Nq = 26 × 25 = 650 different connections 
(i.e., source-destination pairs). The study considered only data for daytime traffic, which covers Lq = 12 
sample intervals × 10 hours × 14 days = 1680 time counts, and analyzed correlation matrices using Random-
Matrix Theory (RMT). 

RMT describes generic behavior of different classes of systems, while deviations from its universal 
predictions allow the identification of system-specific properties. To apply RMT, one compares a random 
correlation matrix—a correlation matrix constructed from mutually uncorrelated time series—against a 
correlation matrix for the data under investigation. Deviations between the statistical properties of the cross-
correlation matrix from investigation data and the correlations in random data convey information about 
“genuine” correlations. One first computes the eigenvalues λk (k =1, 2, …, Nq) and the eigenvalue 
distribution from the investigation data, and then compares the distribution against an analytical result 

                                                 
1 For more details on this network, see the web page http://www.renater.fr, which can be translated from French to 
English using a web-based translation service. 
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predicted for a corresponding random correlation matrix. Eigenvalues and eigenvectors of random matrices 
exhibit known statistical properties [8, 9]. Particularly, in the limit Nq → ∞, Lq → ∞, where 

)1(/ >≡ qq NLQ  is fixed, the probability density function Prm(λ) of engenvalues of a random correlation 
matrix is given by 
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In the Renater study, the most remarkable deviation from Prm(λ) arises about the largest eigenvalue, which is 
found to be approximately a hundred times larger than the maximum eigenvalue predicted for uncorrelated 
time series. This suggests that the largest eigenvalue appears to be associated with a strong correlation in the 
network. 

Deviation in the largest eigenvalue implies that deviation should also be displayed in the statistics of the 
corresponding eigenvector components. The distribution of the components { k

lw ; l = 1, …, Nq} of 
eigenvector wk of a random correlation matrix should conform to a Gaussian distribution with mean zero and 
unit variance, 
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The Renater study found that, while the eigenvectors corresponding to most eigenvalues follow the 
predictions of RMT, the eigenvector corresponding to the largest eigenvalue λ1 deviates significantly from 
the predicted Gaussian distribution. In particular, its components are nonzero and positive, which indicates 
correlations throughout the whole network. Since all network flows contribute to the eigenvector, the 
eigenvector can be viewed as the signature of a collective behavior for which all flows are correlated.  

While the Renater study gives some inspiring results on understanding collective behavior in network 
flows, further studies are needed into spatial-temporal characteristics at multiple timescales and in larger 
networks. In addition, other issues must be considered as data is collected in larger networks. First, we may 
need to collect finer-grain flows in order to explore characteristics at timescales smaller than 5 minutes, and 
to explain temporal dynamics arising from relationships between small-scale fluctuations and long-range 
dependence [4]. Second, we may need to analyze collective properties over different time periods (e.g., from 
hour to hour) to characterize fluctuations in cross-correlation. The data used in the Renater study is 
discontinuous in the time axis, including no data for nighttime traffic. Third, to apply RMT to networks 
larger than Renater, we have to face some special problems related to scale. The Renater study assumes 
complete information from all network connection points, which proves feasible because the Renater 
network contains only about 30 interconnected routers. Arranging for complete coverage of observations in 
larger networks raises issues of scale, both in gathering data from numerous measurement points and in 
consuming computation time and memory when analyzing data. Finally, we should further identify and 
exploit the practical implications arising from network-wide traffic studies in order to help improve network 
engineering and management. A wide range of statistical techniques [19] might be explored in an effort to 
address these pending issues. Inspired by the Renater study, we derived and investigated an analysis method 
based on cross-correlation and deviations from RMT predictions. Next, we explain our method. 
 
2.2   Representing network flow data 
 
Our method requires us to represent packets flowing between distinct source-destination pairs at each 
sampling interval. Let x = (x1, x2, …, xN)T denote the flow vector of corresponding packet counts among all N 
routing domains, observed in starting domains during a given time interval in a large network. (Here T 
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indicates transpose.) Each element of this flow vector is itself a vector defining the number of packets 
flowing into the corresponding domain from each of the other (starting) domains in the network. The method 
to obtain all flow variables in this vector is to first enumerate all the destination domains and then the starting 
domains by 1 to N, and group these indices by routing domain: the domains sending to the first domain in the 
first block, x1, and those sending to the second domain in the second block, x2, and so forth. Thus, we form x 
with blocks in the order x1 = (x21, x31, …, xN1 )T, x2 = (x12, x32, …, xN2 )T, x3 = (x13, x23, x43,…, xN3 )T,…, xN = 
(x1N, x2N, …, x(N-1)N )T, where xij ( ji ≠ ) represents  packet flow from the ith domain to the jth domain. Each 
flow variable xij is normalized as fij by its mean mij and standard deviation σij, 
                                                                  ./)( ijijijij mxf σ−=                                                           (4) 
Then, the normalized flow vector f, corresponding to x, comprises N normalized subvectors, fk (k =1, 2, …, 
N), where each subvector is formed from normalized flow variables fik ( ki ≠  and Ni ≤ ). If M is the 
number of observed samples over the observation period of TM × , then f is a MNN ×− )1(  matrix. 
 
2.3   Cross-correlation analysis 
 
Cross-correlation analysis is a tool commonly used to analyze multiple time series. We can compute the 
equal-time cross-correlation matrix C with elements 
                                                                ,)()())(( tftfC klijklij =                                                         (5) 

which measures the correlation between ijf and ,klf  where ⋅⋅⋅ denotes a time average over the period 
studied. The cross-correlation matrix is real and symmetric, with each element falling between –1 and 1. 
Positive values indicate positive correlation, while negative values indicate an inverse correlation. A zero 
value denotes lack of correlation.  

We can further analyze the correlation matrix C through eigenanalysis [12]. The equation 
                                                                            Cw = λw                                                                     (6) 
defines eigenvalues and eigenvectors, where λ is a scalar, called the eigenvalue. If C is a square K-by-K 
matrix, e.g., )1( −= NNK  in the case of complete coverage, then w is the eigenvector, a nonzero K by 1 
vector (a column vector). Eigenvalues and eigenvectors always come in pairs that correspond to each other. 
This eigenvalue problem has K real eigenvalues, some of which may repeat. An eigenvector is a special kind 
of vector for the matrix it is associated with, because the action of the underlying operator represented by the 
matrix takes a particularly simple form on the eigenvector input: namely, simple rescaling by a real number 
multiple. The eigenvector w1 corresponding to the largest eigenvalue λ1 often has special significance for 
many applications. There are various algorithms for the computation of eigenvalues and eigenvectors [12]. 
Here, we exploit the MATLAB eig command, which uses the QR algorithm to obtain solutions [13]. 
 
2.4 Defining the weight vector 
 
Much of the traffic flowing through the Internet must traverse multiple routing domains. Adaptive behaviors 
of flows in different directions play a crucial role in forming macroscopic patterns, mostly in a self-organized 
manner. The cross-correlation matrix contains within itself information about underlying interactions among 
various flows. In a study of cross-correlations in stock price changes, influence strength is defined as the sum 
of the cross-correlation coefficients associated with one company [14]. In that study, influence strength is 
used to represent the degree to which changes in a company’s stock price affect the entire stock market. 
Similarly, we can measure the congestion level of the jth domain by summing all cross-correlation 
coefficients (ignoring autocorrelation) associated with the jth block, i.e., ∑∑

i lk
klijC

,
))(( , ),( lkji ≠≠ . 

Using this approach in our simulations yielded findings similar to those reported for stock markets [9] and 
for the Renater network [8]. That is, the majority of the properties of the correlation matrix C conformed to 
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the results predicted by RMT2; thus, the correlation coefficients included substantial noise mixed with the 
information about macroscopic patterns. We found this to hold even when observing network traffic flows in 
all nodes, and to hold more strongly in cases where we observed network traffic in only a sparse number of 
nodes. From this, we infer that we are more likely to find less noise (and more information) in cases that 
deviate from the RMT predictions. Such cases can be found by filtering the information about structural 
correlations through eigenanalysis. 

The components of the eigenvector w1 of the largest eigenvalue λ1 represent the corresponding flows’ 
influences on macroscopic behavior, abstracted from the matrix C into the pair (λ1, w1). The eigenvector w1 
comprises N subvectors, i.e., w1 = (w1

1, w1
2, …, w1

N)T. The kth subvector, corresponding to the kth domain, is 
formed from components w1

ik ( ki ≠  and Ni ≤ ) representing the ith domain’s contribution to the kth 
domain. We consider the square of each component, (w1

ik)2, instead of w1
ik itself because 1)(

,

21 =∑
ki

ikw  [15]. 

We define the weight Sk (k = 1, 2, …, N) to be the sum of all (w1
ik)2 in the kth subvector w1

k. 

                                                                         ∑
≠
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N
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ikk wS

)(

21 )( .                                                            (7) 

In the case of complete observations in all routing domains, Sk represents the relative strength of the 
contributions of the flows towards the kth routing domain. Thus, the knowledge of weight vector S = (S1, S2, 
…, SN) across varying k constitutes one summary view of network-wide traffic load.  

When analyzing the spatial-temporal traffic pattern of a large-scale network, the cross-correlation matrix 
C can be a very large object. Usually, floating-point operations on the order of K3 are required to find 
eigenvalues and eigenvectors [12]. Thus, even if such analysis yields informative results, it appears 
impractical to monitor the spatial-temporal pattern of large-scale networks using this method with complete 
coverage of observations. We exploit the property of the increased correlation in order to reduce data 
requirements, filling the flow vector x just with traffic measured in a few domains. This insight might allow 
us to infer traffic-pattern shifts in real time for large areas of interest from observations in only a few distant 
locations. 
 

3   Experimental Analysis 
 
In this section, we show some experimental results after a brief description of our simulation model. 
Assuming complete coverage of observations, we first discuss the timescale of interest, and also consider 
qualitatively the increased correlation arising at that timescale. We then demonstrate our method applied in a 
larger (simulated) network structure. Subsequently, we consider our method with various reductions in the 
number of observation points, showing how increased correlation helps to reduce the scale of measurements 
necessary to capture shifting network-wide traffic patterns over time. As the number of observation points 
decreases, there comes inevitably a level where the performance of our method degrades. We also investigate 
the ability of our method to reveal network-wide behavior when we divide the network into sub-areas. By 
focusing separately on each sub-area and performing the necessary computations in parallel, we can reduce 
the overall time required for analysis. Finally, we compare computation requirements among our various 
experiments to show that reducing data set size might permit us to support real-time monitoring and analysis. 
 
3.1   Simulation model 
 
Network simulation plays a key role in building an understanding of network behavior. Choosing a proper 
level of abstraction for a model depends very much on the objective. Studying large-scale characteristics and 
collective phenomena seems to require simulating networks at large scale. Appropriate models for these 

                                                 
2 In the Renater study, the eigenvalues’ distribution and their spacing distribution follow approximately the predictions of RMT. And, 
the eigenvectors corresponding to most eigenvalues are in agreement with the results of RMT. 
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purposes should also include substantial detail representing protocol mechanisms across several layers (e.g., 
application, transport, network, and link) of functionality, yet must be restricted in space and time in order to 
prove computationally tractable. We propose a modeling approach that maintains the individual identity of 
packets to produce the full-duplex “ripple effect” at the packet level, and that can also accommodate spatial 
correlations in a regular network structure. The regular and homogeneous topology of our network model 
and accompanying routing simplifications, exhibit significant deviation from real networks. Further, our 
model characterizes user behavior in a highly abstract form, and depicts only the most elemental details of 
transport algorithms. Despite these abstractions and simplifications, our model has been tested successfully 
against current understanding of the timescale dynamics of network traffic, and has been used to show a 
significant influence of spatial span on correlation structure [11, 16]. These previous experiences indicate 
that our simulation model, while unlikely to yield quantitative fidelity with real networks, should prove 
suitable as a vehicle to test our proposed analysis method. 

The topology of our model comprises a variable number of interconnected domains. Figure 1, for 
example, shows a network of 25 domains. Each domain has two tiers: an upper tier for routers and a lower 
tier for hosts. Each router is attached to an equal number of sources (100 in this paper), and to a variable 
number of hosts (< 500 in this paper) acting as receivers. Each source models traffic generation as an 
ON/OFF process, which alternates between wake and sleep periods with average durations λon and λoff, and 
with the same shape parameter α of the Pareto distribution [11] for both ON and OFF processes. This traffic-
generation process mimics the heavy-tailed distribution of transferred file sizes observed from empirical 
measurements on the Internet [2]. When a source initiates a connection (ON period), a destination routing 
domain (differing from the source domain) is chosen randomly and uniformly. Our model generates and 
routes individual message, called packets. To store and forward packets, which travel a constant, shortest 
path between a source-destination pair for each flow, routers maintain a queue of limited length (160 
packets/router here), where arriving packets are stored until they can be processed: first-in, first-out. For 
convenience, in this paper we assume that every discrete simulation time-step is 1 millisecond. If a source is 
in an ON period, the source can create one packet every millisecond, subject to the control of TCP 
(Transmission-Control Protocol) constraints, and forward it to the buffer of its directly attached router. 
However, each router can forward multiple packets (10 here) during one millisecond. This simulates the 
difference between access links and backbone links in a hierarchically structured network.    

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 
Figure 1: The network structure with 25 routing domains 
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With our model, we can simulate spatial and temporal traffic dynamics through high user variability (α 

= 1.5, λon = 50 and λoff = 3000), and through adaptive transport (TCP) connections. We first model a network 
with N = 25 domains (Figure 1). Note that there is no structural bottleneck in our model because routing 
assumes a periodic boundary condition, which allows the edges of our grid topology to form a closed 
structure [11]. Given homogeneous variation of traffic demand in space and time, heavily congested subnets 
are induced only infrequently. To deliberately induce congestion, we let one domain have an additional two 
percent probability for selection as the destination domain. This is a natural way to change the network-wide 
traffic demand at longer timescale. We measure the most congested domain, i.e., the domain serving as 
destination for the greatest number of connections. Figure 2 shows the address, yA (= 1, 2, …, 25), of the 
most congested domain changing over time. During the first period, the 19th domain is the most congested. 
Then, at t = 800 s, the 7th domain is selected as a new location to induce the next congestion, but the second 
period of congestion actually starts from t = 1232.9 s. At t = 1600 s, the 19th domain is again selected as the 
hotspot, but the third period of congestion arises 542.2 s into the second period. This congestion-induction 
technique offers an easily interpreted framework to analyze spatial-temporal pattern shifts driven by varying 
traffic demand.  

 
 
 

 
 

 
 
 
 
 
 
 
 

Figure 2: The most congested domain changes over time  
  

3.2   Timescale of interest  
 
When focusing on network-wide behavior, the timescale of interest should not be fine-grained. The 
microscopic fluctuations observed at shorter timescales usually reflect local details, while the driving force of 
traffic demand seems to vary over much longer timescales. The timescale of interest in our experiments 
appears at a middle range, similar to the concept of a critical timescale beyond which traffic fluctuation is 
supposed to exhibit greater influence [17]. At this middle timescale, macroscopic behavior forms a 
connecting link between microscopic fluctuations and the longer-range driving force of variations in traffic 
demand. This expected coherence emerges as a result of adaptive behaviors of flows in different directions, 
but continues to shift its spatial-temporal pattern under the force of traffic demand. 

In our simulation, we observe at granularity of 100 ms (i.e., each 100 model time steps) every fine-grain 
flow between all domain pairs, filling the flow vector x with 600 variables (24 destination domains for each 
of the 25 source domains). Such complete coverage of observation allows us to analyze cross-correlations of 
all flows aggregated at various time granularities, denoted by T. 

We first calculate the weight vector S with M data points (M = 200 in this paper), which span a first 
period ( 2/M points) and a second period ( 2/M  points). We calculate two weight vectors at the aggregated 
levels T = 0.3 s and T = 2 s, shown respectively in Figure 3(a) and 3(b). The weight vector with T = 2 s 
shows two prominent weights at the 7th and 19th domains (S7 and S19), revealing the network-wide pattern of 
congestion arising in these two domains. However, the pattern does not appear when T = 0.3 s. To clarify the 
role of timescale here, we further show in Figure 3(c) the sum of S7 and S19 at different aggregated levels. We 
find that the sum of S7 and S19 gradually increases as T increases, but levels off from about T = 2 s.  To show 

do
m
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n 

time
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how the spatial traffic pattern changes, we calculate the weight vector S using M data points within a moving 
time window MT from one time period to the next. Figure 4 shows the weight vector S evolving with T = 2 s 
and with the time window MT (= 200 × 2 s = 400 s) sliding ahead every 40 s. The time axis indicates the end 
of the moving time window. This technique provides a useful way to observe network-wide congestion 
patterns shifting over time. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 3: Two weight vectors at T = 0.3 s (a) and T = 2 s (b), and (c) 
the sum of S19 and S7 changing at different timescales 

 
 

3.3   Increased correlation  
 
Figure 5(a) shows S7 (dashed line), S19 (dotted line), and the sum of S7 and S19 (solid line), which are 
calculated with T = 1.5 s and with the time window MT (= 200 × 1.5 s = 300 s) sliding ahead every 30 s. 
Figure 5(b) shows the corresponding λ1. While S7 and S19 are distinguishable in three periods, both become 
enhanced during periods of pattern shifting. The sum of S7 and S19, and the largest eigenvalue λ1 undulate in 
the same way, and reach higher values during periods of pattern shifting than during calm periods. The 
increased correlation in the simulation data suggests a collective response over the entire network to changes 
in traffic demand. During transient periods, flows in different directions have to adapt their behaviors to the 
changing impulse of the driving force, and continue to react to each other until they reach collectively a new 
coherent pattern. With the measurement and analysis method, as outlined above, applied at the appropriate 
timescale, as cross-correlations become more pronounced, traffic patterns over the whole system become 
more visible. 

One might hypothesize that system-wide visibility depends on choosing an appropriate timescale. For 
example, observe the system at a coarser timescale of T = 3 s, as shown in Figure 6. We show S7 (dashed 
line), S19 (dotted line), and the sum of S7 and S19 (solid line) in Figure 6(a), and the corresponding λ1 in 
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Figure 6(b). As T increases, doubling from Figure 5 to Figure 6, we find that two transient processes seem to 
converge gradually, and that the second period (seen in Figure 5) becomes indistinct (in Figure 6), as if a 
hotspot appears in the 7th domain for some time. When T is above 4 s (not shown), congestion in the 19th 
domain never appears to diminish. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

 
 

Figure 4: The spatial-temporal pattern evolving with T = 2 s 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 5: (a) S7 (dashed line), S19 (dotted line), and the sum of S7 and S19 (solid 
line), and  (b) the largest eigenvalue λ1 with T = 1.5 s 
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Figure 6: (a) S7 (dashed line), S19 (dotted line), and the sum of S7 and S19 
(solid line), and  (b) the largest eigenvalue λ1 with T = 3 s 

 
 
3.4   Sparse observation posts 
 
While our proposed data analysis method provides substantial visibility into network-wide behavior at the 
critical timescale, it appears impractical to collect fine-grain traces for every source-destination pair over a 
large network. Even if complete observations could be arranged, challenges remain: such as, obtaining 
reliable data transfer to the analysis point and implementing processing power sufficient to analyze the data 
within a meaningful time. In particular, some heavily utilized routers may fail to collect and transfer data, but 
often happen to be the parts of interest to monitor (due to their congested nature). Given these real 
constraints, it would be appealing to reduce the amount of data to transfer and process, while retaining our 
ability to monitor network-wide behavior. 

It could prove feasible to design sample-based techniques suitable to identify network-wide patterns that 
remain invariant for a long time. When traffic demands vary over a large dynamic space-time range, these 
same techniques might fail to detect more quickly changing patterns. However, by exploiting the increased 
correlation arising during volatile periods, we might be able to use a sample-based version of our proposed 
method to identify shifting network-wide congestion patterns. In the following, we provide some preliminary 
results regarding this idea. 

Figure 7 shows a larger simulated network with 81 domains and L (= 16) observation points (shaded). 
For each source, we use the following traffic-generation parameters: α = 1.5, λon = 50 and λoff = 5000. We 
record traffic flowing out from each observation point to all other domains with T = 2.1 s, and we fill the 
flow vector x with )1( −× NL (= 16 × 80 = 1280) variables, representing a substantial reduction from the 
6480 variables that would be needed for complete monitoring. We select a total of four domains as hotspots, 
and increase congestion in two of the domains in each of two different time periods. Figure 8(a) shows how 
the most congested domains, yA (= 1, 2, …, 81), change over time. In the first period (up to about 1830 s), we 
arrange for the 21st and 61st domains to be most congested. In the second period (after 1830 s), we arrange for 
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the 25th and 57th domains to be most congested. We then calculate the weight vector S with 200 data points 
spanning the two periods. In Figure 8(b), the weight vector shows four prominent weights at the 21st, 25th, 
57th and 61st domains (S21, S25, S57 and S61), and thus reveals the network-wide pattern that we stimulated. 
From this, we infer that such patterns can be detected even without complete observations. Note also, that 
this technique managed to find the congestion pattern without sampling packets flowing out of the congested 
domains. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 7: The larger network with 81 domains and 16 selected observation points (gray) 
 

 
 What if we further reduce the number of sample points? Select L = 8 as the number of observation 

points (i.e., the 13th, 15th, 29th, 35th, 47th, 53rd, 67th, and 69th domains here). Thus, the flow vector x has 
)1( −× NL = 8 × 80 = 640 variables. The related weight vector S, calculated with 200 data points spanning 

two periods, is shown in Figure 8(c), which is almost the same as Figure 8(b). Next, with the observed data 
from only these eight sample points, we calculate the weight vector S using M data points within a moving 
time window MT from one time period to the next. Figure 9 shows the weight vector S evolving with T = 2.1 
s and the time window MT (= 200 × 2.1 s = 420 s) sliding ahead every 42 s. With a few observation points 
visibility into time-varying network congestion appears indistinguishable during non-transient periods; 
however, we find that the effect of transient periods is very helpful for capturing the network-wide pattern 
shifting over time.  
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Figure 8: (a) The most congested domains changing over time, and two 
weight vectors with L =16 (b) and L = 8 (c) 

 
          

Can the proposed method succeed with still further reduction in the number of sample points? We 
finally select L = 4 as the number of observation points (i.e., the 31st, 33rd, 49th, and 51st domains here). The 
flow vector x has )1( −× NL = 4 × 80 = 320 variables. The weight vector S, again calculated with 200 data 
points spanning two periods, is shown in Figure 10(a). Here, the performance of the method appears to 
degrade. While Figure 10(a) reveals the network-wide pattern to some extent, it also exhibits differences with 
Figure 8(b) and Figure 8(c). We attribute theses differences to local effects being amplified in the weight 
vector, but not appearing in the global pattern of Figure 8(b) and Figure 8(c). For example, S12 is very 
prominent in Figure 10(a), but not in Figure 8. This occurs because traffic from our four sampling domains to 
the 12th domain appears jammed because the routing algorithm in our model [11] forwards packets through 
the congested 21st domain. Despite degraded performance, the weight plot in Figure 10(a), though derived 
from only four sample points, is still helpful for inferring the network-wide pattern.  

Can we derive further insight by decomposing the network into parts with regard to the data analysis? 
We divide the network into three parts (i.e., 1st ~ 27th, 28th ~ 54th, and 55th ~ 81st), and analyze each 
separately. Since all hotspots exist in the first and third parts, Figure 10(b) and 10(c) show respectively their 
weight vectors, each of which is calculated with the flow vector of 4 × 27 = 108 variables. Notice that the 
weights of the domains are enhanced in these local maps. Figure 10(d) shows distinctly S57 (dotted line) and 
S61 (solid line) within the third part, which change with the time window MT (= 200 × 2.1 s = 420 s) moving 
ahead every 21 s (recall Figure 9). 
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Figure 9: The spatial-temporal pattern observed with T =2.1 s at eight 
observation posts 

 
 

Our experiments suggest that we can gain network-wide knowledge of changing congestion patterns 
with substantially reduced data sets, but what effect does this reduced data have on computation 
requirements? Might we perform data analysis to support real-time monitoring? To produce Figure 10(c) 
requires just 0.06 s for computing the correlation matrix, all eigenvalues and eigenvectors with MATLAB on 
a 1 GHz computer. Our other computations required more computation: 1.10 s for Figure 10(a), 9.98 s for 
Figure 8(c), and 82.92 s for Figure 8(b). 
 

4   Future Work 

The preliminary results we presented here encourage further investigation. We can conceive future work 
along two dimensions: scientific and engineering. Along the scientific dimension, we plan to investigate the 
applicability of our proposed cross-correlation based method to observe complex phenomena using a more 
realistic simulation model of a large-scale network. Such investigation should further test the utility of our 
analysis method. We also need to understand differences between our simulation results and the cross-
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correlations reported in the Renater study, which appear much stronger than those we found from our 
simulation model. For example, the largest eigenvalue reported in the Renater study is at least four times 
larger than the eigenvalues estimated from our simulations. This might imply that actual traffic demand 
varies much more violently than the simulated “square wave” used in our experiments. If this implication 
proves valid, then our proposed method might be quite well suited for use in network operation and 
engineering. We can further investigate this question as suitable data becomes available from Internet 
measurements. At the same time, we could consider insights provided by other statistical methods [19], such 
as process control methods for multivariate correlated data. 

Along the engineering dimension, we plan to investigate a range of applications for our proposed 
analysis method. For example, using a more realistic network simulation, we plan to explore the ability of 
cross-correlation based analysis to reveal the macroscopic effect of distributed denial of service (DDoS) 
attacks. Can our method reveal the dynamics of various attack types, such as constant rate, increasing rate, 
natural-network-like-congestion, subgroup, and pulsing attacks? Can our method distinguish the existence of 
multiple attack targets and the location of attack sources? Simulation might also allow us to examine the 
utility of our method to guide real-time traffic engineering in response to shifting network demands. If such 
simulation experiments yield encouraging results, then we could use real Internet data, once available, to test 
the applicability of our analysis method to a large operational network. Simulation could also help us 
evaluate appropriate values for various parameters, e.g., the number of data points to collect (M), the time 
granularity to observe (T), and the number (L) and location of observation points, associated with our 
proposed analysis method. After we understand better theoretical parameters to use, we can consider 
practical engineering methods associated with deployment and application. Though we can imagine data 
recorded, possibly by NetFlow [18], and transmitted frequently to a collection server, significant practical 
questions remain. For example, could such data collection induce measurement artifact into the cross-
correlation eigenvalue depiction of the network? How many observation points can be deployed in the 
Internet, and where? Should a central site manage data collection and analysis, or could decentralized sites 
collaborate to exchange subsets of data collected and analyzed independently? Further, can network-wide 
traffic monitoring be deployed as a real-time service to support scientific research, to aid traffic engineering, 
to inform end users about network conditions, and to provide early warning of possible DDoS attacks? If 
such a service proves feasible, then how can network-wide shifts in traffic patterns be used to trigger more 
detailed monitoring activities, for example, to verify that a hotspot really exists or that a DDoS attack is 
underway?  

5   Conclusions 
 
Operating and engineering large-scale networks could benefit from development of promising tools to 
monitor network-wide traffic in space and time. In this paper, we investigated spatial-temporal traffic 
analysis using a cross-correlation method, based on the eigenvector of the largest eigenvalue. To illustrate the 
method, and reveal its promise, we reported simulation results from some experiments using a rather simple 
network model. Through a defined weight vector, we could identify macroscopic traffic patterns within the 
simulated network at the critical timescale, which allowed us to observe the more prominent weights of 
congested domains as increased correlation arises. We evaluated our method with various reductions in the 
number of observation points, and suggested that we could still capture the network-wide pattern shifting 
over time. We identified some degradation in the performance of our proposed method as the number of 
sample points passed below a threshold; however, we also suggested that we could compensate for this 
degradation somewhat by dividing the network into sub-areas, and then focusing on each smaller area 
separately. Our experiments suggest a possibility to observe network-wide shifts in congestion patterns with 
substantially reduced data sets and lower computation requirements, which might enable data analysis in 
support of real-time monitoring. 
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Figure 10: (a) a weight vector with L =4, (b) (c) two weight vectors for the 
first (1st ~ 27th) and third parts (55th ~ 81st), and (d) S57 (dotted line) and S61 
(solid line) of the third part 
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